Electrical Engineering and Computer Science


Computer Vision Seminar

Self-Supervised Visual Learning and Synthesis

Alyosha Efros


Associate Professor
University of California, Berkeley
 
Wednesday, March 22, 2017
4:00pm - 5:30pm
1690 BBB

Add to Google Calendar

About the Event

Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning -- using raw data as its own supervision. Several ways of defining objective functions in high-dimensional spaces will be discussed, including the use of General Adversarial Networks (GANs) to learn the objective function directly from the data. Applications in image synthesis will be shown, including automatic colorization, novel view synthesis, image-to-image translation, and, terrifyingly, #edges2cats.

Biography

Alexei (Alyosha) Efros joined UC Berkeley in 2013 as associate professor of Electrical Engineering and Computer Science. Prior to that, he was nine years on the faculty of Carnegie Mellon University, and has also been affiliated with École Normale Supérieure/INRIA and University of Oxford. His research is in the area of computer vision and computer graphics, especially at the intersection of the two. He is particularly interested in using data-driven techniques to tackle problems where large quantities of unlabeled visual data are readily available. Alyosha received his PhD in 2003 from UC Berkeley. He is a recipient of CVPR Best Paper Award (2006), NSF CAREER award (2006), Sloan Fellowship (2008), Guggenheim Fellowship (2008), Okawa Grant (2008), Finmeccanica Career Development Chair (2010), SIGGRAPH Significant New Researcher Award (2010), ECCV Best Paper Honorable Mention (2010), and the Helmholtz Test-of-Time Prize (2013).

Additional Information

Contact: Judi Jones

Phone: 763-8557

Email: asap@umich.edu

Sponsor(s): EECS

Open to: Public