
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-29, NO. 8, AUGUST 1980

On Evaluating the Performability of

Degradable Computing Systems

JOHN F. MEYER, SENIOR MEMBER, IEEE

Abstract-If the performance of a computing system is "degrad-
able," performance and reliability issues must be dealt with simulta-
neously in the process of evaluating system effectiveness. For this
purpose, a unified measure, called "performability," is introduced and
the foundations of performability modeling and evaluation are estab-
lished. A critical step in the modeling process is the introduction of a
"capability function" which relates low-level system behavior to
user-oriented performance levels. A hierarchical modeling scheme is
used to formulate the capability function and capability is used, in turn,
to evaluate performability. These techniques are then illustrated for
a specific application: the performability evaluation of an aircraft
computer in the environment of an air transport mission.

Index Terms-Degradable computing systems, fault-tolerant
computing, hierarchical modeling, performability evaluation, per-
formance evaluation, reliability evaluation.

I. INTRODUCTION

DURING the past decade, performance evaluation and
reliability evaluation have emerged as important

technical disciplines within computer science and engineering.
Evaluations of computer performance and computer reliability
are each concerned, in part, with the important question of
computer system "effectiveness," that is, the extent to which
the user can expect to benefit from the tasks accomplished by
a computer in its use environment. With regard to effectiveness
issues, modeling of computer performance (see [1]-[3], for
example) has stressed the need to represent the probabilistic
nature of user demands (workload) and internal state behavior,
under the assumption that the computer's structure is fixed
(that is, there are no permanent changes in structure due to
faults). On the other hand, modeling of compute'r reliability
(beginning with the pioneering work of Bouricius et al. [4])
has stressed representation of the probabilistic nature of
structural changes caused by transient and permanent faults
of the computer.

In the face of these traditional modeling distinctions, we
consider an important class of computing systems wherein
system performance is "degradable," that is, depending on the
history of the computer's structure, internal state, and envi-
ronment during some specified "utilization period" T, the
system can exhibit one of several worthwhile levels of perfor-
mance (as viewed by the user throughout T). In this case we

Manuscript received June 19, 1978; revised February 22, 1980. This re-
search was supported by the NASA Langley Research Center under Grant
NSG 1306.
The author is with the Department of Electrical and Computer Engineering

and the Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor, MI 48109.

find that performance evaluations (of the fault-free system)
will generally not suffice since structural changes, due to faults,
may be the cause of degraded performance. By the same token,
traditional views of reliability (probability of success, mean
time to failure, etc.) no longer suffice since "success" can take
on various meanings and, in particular, it need not be identified
with "absence of system failure."

Modeling needs for (gracefully) degradable systems were
first investigated by Borgerson and Frietas [5] in connection
with their analysis of the PRIME system [6]. Although they
recognized the need to formulate the probability of each pos-
sible level of performance, that is, the probability of k
"crashes" during T for k = 0,1,2, , their evaluation effort
dealt mainly with the question of reliability (the probability
of no crashes during T). Other studies employing Markov
models have likewise emphasized the evaluation of reliability
oriented measures (see [7]-[9], for example).
Some recent investigations, on the other hand, have dealt

with measures aimed at quantifying performance as well as
reliability. In particular, Beaudry [10] has introduced a
number of computation related measures for degradable
computing systems and has shown how to formulate these
measures in terms of a transformed Markov model. In exam-
ining reconfiguration strategies for degradable systems, Troy
[11] has distinguished levels of performance according- to
"workpower" and has formulated system effectiveness (re-
ferred to as "operational efficiency") as expected workpower.
In another recent study, Losq [12] has investigated degradable
systems in terms of degradable resources, where each resource
is modeled by an irreducible, recurrent, finite-state Markov
process.

In the discussion that follows, we describe a general mod-
eling framework that permits the definition, formulation, and
evaluation of a unified performance-reliability measure re-
ferred to as "performability." It is shown that performability
relates directly to system effectiveness and is a proper gener-
alization of both performance and reliability. A critical step
in performability modeling is the introduction of the concept
of a "capability function" which relates low-level system be-
havior to user-oriented levels of performance. A hierarchical
modeling scheme is used to formulate the capability function,
and capability is used, in turn, to evaluate performability.

II. SYSTEM MODELS

A computing system, as it operates in its use environment,
may be viewed at several levels. At a low level, there is a de-

0018-9340/80/0800-0720$00.75 ©0 1980 IEEE

720

MEYER: DEGRADABLE COMPUTING SYSTEMS

tailed view of how various components of the computer's
hardware and software behave throughout the utilization pe-
riod. At this level, there is also a detailed view of the behavior
of the computer's "env ronment," where by this term we mean
both man-made cornponents (user input- peripheral subsys-
tems, etc.) and natural components (radiation, weather, etc.)
which can influence the computer's effectiveness. The com-
puter, together with its environment, will be referred to as the
"total system." A second view of the total system is the user's
view of how the system behaves during utilization, that is, what
the system accomplishes for the user during the utilization
period. A third, even less detailed view, is the economic benefit
derived from using the system, that is, the computing system's
worth (as measured, say in dollars) when operated in its use
environment.
To formalize these views, we postulate the existence of a

probability space (Q,6,P) that underlies the total system,
where Q is the sample space, C is a set of events (measurable
subsets of Q), and P: C)- [0,11 is the probability measure (see
[13], for example). This probability space represents all that
needs to be known about the total system in order to describe
the probabilistic nature of its behavior at the various levels
described above. It thus provides a hypothetical basis for de-
fining higher level (i.e., less detailed) models. In general,
however, it will neither be possible nor desirable to completely
specify Q, 6, and P.

In the discussion that follows, let S denote the total system,
where S is comprised of a computing system C and its envi-
ronment E. At the most detailed level, the behavior of S is
formally viewed as a stochastic process [14], [15]

Xs= Xtlt &T (1)

where T is a set of real numbers (observation times) called the
utilization period and, for all t & T, Xt is a random vari-
able

Xt:Q Q

defined on the underlying description space and taking values
in the state space Q of the total system. Depending on the
application, the utilization period T may be discrete (coun-
table) or continuous and, in cases where one is interested in the
long-run behavior, it may be unbounded [e.g., T = R+ =
[0,oo)]. The state space Q embodies the state sets of both the
computer and its environment, i.e.,

Q = QC X QE
vhere QC and QE can, in turn, be decomposed to represent the
iocal state sets of computer and environmental subsystems. For
our purposes, it suffices to assume that Q is discrete and, hence,
for all t E T and q E Q, "Xt = q" has a probability (i.e.,
$ I.X (w) = q} E 6). The stochastic processXs is referred to
as tlhe base model of S. An instance of the base model's be-
havior for a fixed wc Q is a state trajectory u,,:T Q
where

u,,,(t) = Xt(w), vte T. (2)

(The term "state trajectory" derives from modern usage in the
theory of modeling [16]; synonyms in the more specific context
of stochastic processes are "sample function," "sample path,"
and "realization" [14], [15].) Thus, corresponding to an

underlying outcome w E Q, u,, describes how the state of the
total system changes as a function of time throughout the
utilization period T. Accordingly, the "description space" for
the base model is the set

U= {lu,w E (3)
which is referred to as the (state) trajectory space of S.
As generally defined, the concept of a base model thus in-

cludes the type of queueing models used in computer perfor-
mance evaluation [2], [3] and the kind of Markov or semi-
Markov models employed in reliability evaluation [7]- [9]. The
intent of the definition, however, is the inclusion of less re-
stricted base models which can represent simultaneous vari-
ations in the computer's structure and internal state (via the
state set QC) and environment (via the state set QE). In other
words, the emphasis here is on the modeling of degradable
computing systems where changes in structure, internal state,
and environment can all have an influence on the system's
ability to perform. Accordingly, these base models may be
regarded as generalized performance models, where structure
is allowed to vary, or equivalently as generalized reliability
models where variations in internal state and/or the compu-
tational environment are taken into account.

In formal terms, the user-oriented view of system behavior
is likewise defined in terms of the underlying probability space
(Q,&,P). Here we assume that the user is interested in distin-
guishing a number of different "levels of accomplishment"
when judging how well the system has performed throughout
the utilization period (one such level may be total system
failure). The user's "description space" is thus identified with
an accomplishment set A whose elements are referred to al-
ternatively as accomplishment levels or (user-visible) per-
formance levels. A may be finite, countably infinite, or un-
countable (in the last case, A is assumed to be an interval of
real numbers). Thus, for example, the accomplishment set
associated with a nondegradable system is A = lao, a I} where
ao = "system success" and a, = "system failure." In their
modeling of the PRIME system, Borgerson and Freitas [5]
viewed accomplishment as the set A = lao,a 1,a2, } where ak
= "k crashes during the utilization period T." If the user is
primarily concerned with system "throughput," a continuous
accomplishment set might be appropriate, i.e., A = R+ =
[O,a)), where a number a E A is the "throughput averaged over
the utilization period T."

In terms of the accomplishment set, system performance
is formally viewed as a random variable

Ys: Q A (4)
where Ys(w) is the accomplishment level corresponding to
outcome o. in the underlying description space. Similarly, as-
suming that the economic gain (or loss) derived from using the
system is represented by a real number r (interpreted, say, as
r dollars), system worth is a random variable defined as

Ws: Q o R (the real numbers) (5)
where Ws(w) is the worth associated with outcome w.
The terminology and notation defined previously is sum-

marized in Table I. Note that, at this point in the development,
there are no implied relationships between these three views;
their only common bond so far is that they are representations

721

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 8, AUGUST 1980

TABLE I
TERMINOLOGY AND NOTATION FOR SYSTEM MODELS

Model Description Space

Base model Xs Trajectory space U

System performance YS Accomplishment set A

System worth Ws The real numbers 1

of the same system or, more formally, that they are defined on
the same underlying probability space. To be useful, however,
the base model Xs should support the performance variable
Ys in an appropriate manner (indeed, the term "base" is
suggestive of this need) and, in turn, Ys should support the
worth variable Ws. The precise nature of these connections,
as they relate to the system's effectiveness, is developed in the
section that follows.

III. EFFECTIVENESS, PERFORMABILITY, AND
CAPABILITY

When applied to computing systems, "system effectiveness"
(see [1], for example) is a measure of the extent to which the
user can expect to benefit from the tasks accomplished by a
computer in its use environment. More precisely, if benefit is
identified with the worth Ws of the system then system ef-
fectiveness is expected worth, i.e., the expectation (expected
value) of the random variable Ws; in short

eff(S) = E[Ws]. (6)
(An implicit assumption here is that Ws is defined such that
E [Ws] exists; see [13], for example.) Because a direct evalu-
ation of eff(S), using the definition of Ws, is generally not
feasible (cf., our earlier remarks concerning the hypothetical
nature of the underlying probability space), we wish to es-
tablish connections among the base model Xs, system per-
formance Ys, and system worth Ws which can be used in the
process of evaluating eff(S).
To express system effectiveness in terms of system perfor-

mance, the user's view of system worth must be compatible
with system performance to the extent that Ws can be for-
mulated as a function of Ys. More precisely, we assume there
exists a worth function w: A - R such that, for all w EQ,

Ws(c) = W(Ys Go)). (7)

ability space, the interpretation of performability is straight-
forward, that is, for a designated set B of accomplishment
levels, ps(B) is the probability that S performs at a level in B.
The requirement that B be "measurable" says simply that the
corresponding event {c I Ys(w) E B} must lie in the underlying
event space, insuring that the right-hand probability is de-
fined.

If the performance variable Ys is continuous then A must
be continuous and, hence (by an earlier assumption), A is some
interval of real numbers, including the possibility that A = R
= (-co,o). In this case (or if Ys happens to be discrete and yet
real-valued), we know from probability theory that the induced
measure Ps is uniquely determined by the probability distri-
bution function of Ys (see [13], for example), i.e., by the
function FyS (which we write simply as Fs) where, for all b E A,

Fs(b) = P(IwIYs(w) < b}). (8)
Moreover, Ps can then be expressed as the Lebesgue-Stieltjes
measure induced by Fs (cf., [13, sec. 4.5]), that is, for any
(measurable) set B of accomplishment levels, the performa-
bility value of B is given by

ps(B) = SBdFs(b). (9)

In particular, if B is a single interval B = (bo,b1] where bo <
bI, then

ps(B) = Fs(b1) - Fs(bo).

This special case has practical significance since it quantifies
the ability of S to perform within the specified limits bo and
b1.

If, on the other hand, Ys is a discrete random variable then
each singleton set B = la}(a E A) is measurable and Ps is
uniquely determined by the probability distribution of Ys, i.e.,
by the set of values

{ps(a)la E Al (10)

where ps(a) denotes ps(la}). Given this distribution, if B is
a set of accomplishment levels then ps (B) can be written as
the sum

(1 1)ps(B) = Z ps(b).
beB

If a E A, w(a) is interpreted as the "worth of performance level
a." As for the performance variable Ys, a natural measure that
quantifies both system performance and reliability (i.e., the
ability to perform) is the probability measure induced by Ys.
We refer to this unified performance-reliability measure as

the "performability of S" which, in terms of our modeling
framework, can be generally defined as follows.

Definition 1: If S is a total system with performance Ys
taking values in accomplishment set A, then the performability
ofS is the function ps where, for each measurable set B of

accomplishment levels (B c A),

ps (B) = P(wI I Ys (w) E B}).
Since P is the probability measure of the underlying prob-

Hence, the probability distribution of Ys or, equivalently, the
restriction of Ps to single accomplishment levels, suffices to
determine the performability. For this reason, when Ys is
discrete the performability of S can be alternatively defined
as follows.

Definition l a: If S is a total system with performance Ys
taking values in accomplishment set A and, moreover, Ys is
a. discrete random variable, then the performability of S is
the function Ps where, for each accomplishment level
a(a E A),

ps(a) = P(UwI Ys(w) = a}).
Note that Definition la is essentially the restriction of

Definition 1 to single accomplishment levels (which have

722

MEYER: DEGRADABLE COMPUTING SYSTEMS

probabilities defined when Ys is discrete). Conversely, given
Definition 1 a, its extension to Definition 1 can be obtained (in
principle) by application of (11) to each subset B of A.
To justify the notion of performability in the context of

system effectiveness, if we assume the existence of a worth
function w [see (7)], then the real-valued random variable Ws
is a function w of the random variable Ys. Moreover, we know
that w is a "measurable" function (e.g., see [13, sec. 3.8]) since,
prior to (7), we assumed that Ws was a random variable.
(Indeed, condition (7) is actually stronger than needed; its
advantages, however, are its simplicity and the fact that it
serves the purpose of the present discussion.) Hence, we are
able to appeal to the well-developed theory of functions of a
random variable and, particularly, expectations where, again,
it is convenient to distinguish two cases. If the performance
variable Ys is continuous (and thus real-valued) with proba-
bility distribution function Fs (8) then

E[w(Ys)] = S w(a) dFs(a) (12)

where the integral is a Lebesgue-Stieltjes integral. In case Ys
is discrete, then (12) still applies provided the levels in A are
represented by real numbers. However, independent of
whether Ys is real-valued, a simpler and more familiar for-
mulation holds in this case where, ifps(a) is as defined in (10),
then

E[w(Ys)] = E w(a)pS(a). (13)
a eA

By the definition of system effectiveness (6) and the fact that
Ws = w(Ys) (7), we have

eff(S) = E[Ws] = E[w(Ys)]

and, accordingly, (12) and (13) are formulations of the ef-
fectiveness of S. Moreover, we see that each formula involves
the worth function w and the performability Ps [although Ps
does not occur explicitly in (12), recall that Fs characterizes
Ps (9)]. In other words, relative to the system-user interface
delineated by the accomplishment set A, effectiveness evalu-
ation may be decomposed into worth evaluation (on the user
side of the interface) and performability evaluation (on the
system side). Consequently, looking in -toward the system,
performability emerges as a key measure with regard to
evaluations of system effectiveness.
To further justify the concept of performability, we note that

traditional evaluations of computer performance and computer
reliability are concerned with special types of performability.
Performance evaluation is concerned with evaluating Ps under
the assumption that the computer pa-rt of S is fixed (i.e., its
structure does not change as the consequence of internal
faults). Reliability evaluation is concerned with evaluating
ps(B) where B is a designated subset of accomplishment levels
associated with system "success." If A is finite, a performa-
bility evaluation can alternatively be regarded as IA reliability
evaluations, one for each singleton "success set" B = {a}, and
the evaluation may actually be carried out in this manner. As
this process is generally more complex than a typical reliability
evaluation procedure (in particular, it involves distinguishing

all the performance levels as well as determining their proba-
bilities), we reserve the term "reliability evaluation" to mean
the evaluation of "probability of success" for some specified
success criteriorn B. Moreover, even when IA = 2, we find (as
discussed later in this section) that performability models
represent a proper extension of models typically employed in
reliability evaluation.
As a final remark regarding justification, we have found that

when system performance is not degradable (as in the case, for
example, with fault-tolerant architectures which employ
standby sparing [4], N modular redundancy [17], or combi-
nations thereof), it is possible to treat performance and reli-
ability as separate issues in the process of evaluating system
effectiveness. On the other hand, if performance is degradable,
it can be shown (see [18]) that the more general concept of
performability must typically be invoked (as in (12) and (13),
for example) when evaluating system effectiveness.

With performability established as the object of the evalu-
ation process, we are now in a position to specify how the base
model process Xs (1) must relate to the performance variable
Ys (4) if it is to support an evaluation of the performability Ps.
To precisely state this relationship, we suppose that Xs is
specified by its finite-dimensional probability distributions (or
by information that determines these distributions) and we let
Pr denote the probability measure (defined on a a algebra of
subsets of U) which is uniquely determined by these finite-
dimensional distributions (see [14], for example). If Pr is de-
fined for a trajectory set V(V c U) then, relative to the
underlying measure P,

Pr(V) = P(lw I u, E VI), (14)
i.e., Pr(V) is the probability that an observed state trajectory
u', [see (2)] lies in the set V. In practice, however, Pr(V) will
be calculated directly from the finite-dimensional distributions
that determine Pr. The measure Pr thus serves to formally
describe the probabilistic nature of the base model Xs.

For Xs to support Ys, we now impose the following re-
strictions. We assume first that the base model is refined
enough to distinguish the levels of accomplishment perceived
by the user, that is, for all w,w' e Q,

Ys(w) # Ys(w') implies u,, # uW,, (15)

where u,, and u,,, are the state trajectories associated with
outcomes 'w and w'. This implies that each trajectory u e U
is related to a unique accomplishment level a E A. In addition,
we assume that the probabilistic nature of Ys is determinable
from that of Xs. More precisely, if B is a measurable set of
accomplishment levels, i.e., the set {c I Ys(w) E B) is in the
domain of the underlying measure P, then we require that the
corresponding trajectory set

UB = 1U, I YS(W) E B}
lie in the domain of the base model measure Pr; in short

If B is measurable then Pr is defined for UB. (16)

Given that conditions (15) and (16) are satisfied, we can
establish a link between Xs and Ys which, in the context of
effectiveness modeling [18], is generally referred to as the

723

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 8, AUGUST 1980

"capability" of S. Adopting this terminology, we have
Definition 2: If S is a system with trajectory space U and

accomplishment set A then the capabilityfunction of S is the
function Ys: U o A where yys(u) is the level of accomplish-
ment resulting from state trajectory u, that is,

'Ys(u) a if for some w E Q, u,, = u and Ys(w) = a.
Condition (15) insures that the capability function ys is

well-defined (i.e., it deserves the name "function"), for if ut,
= uw, then ys(u,) = -ys(uw,). Condition (16) guarantees that
the inverse yS- of the capability function (,ys-I is a relation
between A and U but generally not a function) will carry sets
that are measurable with respect to Ys into sets that are
measurable with respect to Xs. To substantiate this fact,
suppose that B is a measurable set of accomplishment levels.
Then the inverse image of B is the trajectory set

,ys-'(B) = ulIys(u) EB&

or, equivalently, by the definition of ys (Definition 2),

yS (B) u=.u IYs(w) E B}
= UB.

But condition (16) insures that Pr is defined for UB and, hence,
yS-I1(B) is measurable where

Pr(ys - (B)) = Pr(UB). (17)

In effect, therefore, conditions (15) and (16) say that Ys can
be viewed as a random variable defined on the probability
space (with measure Pr) induced by the base model Xs. Of
more practical significance, however, is the fact that, under
these conditions, Xs and -Ys suffice to determine the perfor-
mability of S. To argue the latter, ifB is measurable then, by
(14), Pr(UB) = P(GwIuU E UBI)

= P(JwIYS(w) e B})
which, by Definition 1, is just the performability of S for ac-
complishment levels B, i.e.,

Pr(Us) = ps(B). (18)

Combining (17) and (18), we conclude that

ps(B) = Pr(Q-1(B)), (19)
substahtiating the fact that Xs and ys (which determine Pr
and yS-1, respectively) suffice to support an evaluation of the
performability Ps.

In view of what has just been observed, ifXs and Ys admit
to the definition of a capability function -ys (in which case we
presume that conditions (15) and (16) are satisfied), the pair
(Xs,ys) is said to constitute a performability model ofS. If
B is a (measurable) set of accomplishment levels, the inverse
image yS -1(B) = UB is referred to as the trajectory set ofB,
where its determination requires an analysis of how levels in
B relate back down via ys'- to trajectories of the base model.
ps(B) is then determined by a probability analysis of sy- I (B).
In case Ys is discrete (Definition 1 a), it suffices to consider
inverse images of the form Ys1(a) where a E A. Methods
of implementing this process in the discrete case are discussed
in Section IV.

The role of a capability function in performability evaluation
is similar to that of a "structure function" [19] in reliability
evaluation. However, even when performability is restricted
to reliability, the concept of a capability function is more
general. The special class which corresponds to the use of
structure functions in "phased mission" analysis (see [20], for
example) may be characterized as follows. Let S be a system
where Q is the state space of the base model and A = 10, 1I is
the accomplishment set (here, 1 denotes "success" and 0 de-
notes "failure"). Then a capability function yS is structure-
based if there exists a decomposition of T into k consecutive
time periods T1, T2, , Tk and there exist functions
eP I .P2, ,'Pk with spj: Q - I0, such that, for all u E U,

Es(u) = 1 iff sp(u(t)) = 1, (20)

for all i E 11, 2, , k} and for all t e Ti. In the context of
"phased mission" analysis, Ti is referred to as the ith phase
(of the mission) and Spi is the structure function of the ith
phase. For each function spi, the inverse image pi-I (1) can be
interpreted as the set of "success states" of the ith phase and,
accordingly, (20) says that S performs successfully ('ys(u) =
1) if and only if u(t) is a success state throughout each phase.
Thus, the advantage of a structure-based formulation is that
each phase may be treated independently when determining
the set oys - '(1) of all successful state trajectories.

If system success is viewed in structural terms, as is the case
in most reliability studies, a structure-based capability function
will usually suffice. On the other hand, when success relates
to system performance we find that capability may no longer
be expressible in terms of locally defined success criteria as
specified by the structure functions spi. The following example
serves to demonstrate this fact.

Let S = (C,E) where C represents a distributed computer
comprised of n subsystems, and E represents the computer's
workload. Suppose further that system "throughput" (i.e., the
user-visible work rate of C in E) varies as a function of the
number of faulty subsystems. For our purposes here, it suffices
to assume that the workload E is constant and, hence, the
operational states of S can be represented by the state space
Q = lqo,q,I ,qn} where state qi corresponds to "i faulty
subsystems." The variation in throughput is described by a
function r: Q - R+ where T(i) = the throughput of S in state
qi. Assuming S is used continuously throughout a utilization
period T = [0,h] of duration h > 0, the base model of S is a
stochastic process Xs = IXt E [0,h]} where each Xt is a
random variable taking values in Q. (The probabilistic nature
ofXs is not an issue here.) As for performance, suppose that
the user is interested in the average throughput of the system,
where the average is taken over the utilization period T.
Suppose further that system "success" is identified with a
minimum average throughput F. Then the capability function
of S is the function ys: U -, } where

ays(u) =t
if- T(u(t))dt > r

hews
otherwise.

(21)

Due to the inherent memory of the integration operation,

724

MEYER: DEGRADABLE COMPUTING SYSTEMS

we find that oys does not admit to a structure-based formula-
tion. To verify this fact with a simple 2-state example, suppose
Q = lqo,qI}, T (qo) > r(q I) and = (r(qo) -r(q))/2. Then,
according to (21), -yS(u) = 1 if the total time for which u(t)
= qo is at least h/2. In particular, this says that more than one

trajectory results in success, i.e., Ys - (1) > 1. To prove that
l's is not structure-based let us suppose to the contrary, that
is, there exist phases TI, T2, , Tk and structure functions

1,(2, ** ,'Pk such that(20)'is satisfied. If we let Ri denote the
success states of phase i, i.e., Ri = pi- I(1), then Ri 0, for

all i, or otherwise no trajectory results in success. It must also

be the case that R, J$qo,q1} for all i, for if Ri = $qo,q1} (all
states are success states during phase i) then the condition

i (u (t)) = 1, V t E Ti [see (20)] is always satisfied, that is,
phase i can be ignored when determining whether u spends at
least half its time in state 0. This is clearly impossible if the
duration of Ti is at least h/2. If the duration of Ti is less than
h/2, trajectories u and v can be found such that u(t) = v(t),
V t E (T - T,), and yet ys(u) # -ys(v) contradicting the
ability to ignore phase i. The only remaining alternative is that
I Ri I = 1, for all i, that is, each phase has exactly one success

state which, in turn, implies that there is exactly one suc-

cess trajectory u. This contradicts our initial observation that
ys-I (1)1 > 1 and proves that ys is not structure-based.
We can conclude, therefore, that even in the case of two

accomplishment levels, the concept of a capability function
(Definition 2) represents a proper extension of relations be-
tween state behavior and system performance that are typically
assumed in the theory of reliability. Moreover, we have found
that this extension permits the phases of a utilization period
to be "functionally dependent" in a precisely defined sense,
whereas the phases associated with a structure-based capability
function must be functionally independent. The reader is re-

ferred to [21] for a more complete discussion of functional
dependence and its implications.

IV. PERFORMABILITY EVALUATION

As established in the previous section [see (19)], if (Xs,ys)
is a performability model then the performability ofS for a set
of accomplishment levels B may be expressed as ps(B) =

Pr(ys -I(B)). Accordingly, one method of evaluating a par-

ticular ps(B) is to 1) determine ys-I(B) and then 2) evaluate
Pr(Qys-I(B)). Since the "distance" between the base model
Xs and the accomplishment set A may be considerable, step
1) can be facilitated by introducing additional models between
Xs and A.

In general, each intermediate model is defined in a manner

similar to that of the base model. More precisely, if there are

m + 1 levels in the hierarchy, the level-i model (i = 0,1, ,

m, where level-0 is the least detailed model at the "top"' of the
hierarchy) is a stochastic process

Xi= $Xlt Ti, Tic T

where, for a fixed t E Ti X' is a random variable taking values
in a set Qi, the state space of Xi. The state space Qi is gener-
ally composed of two components, i.e.,

Qi = Q', X Qib

where Q' is the composite state set and Q' is the basic state
set (at level-i). States in the composite part Qc represent a less
detailed view of the operational status of the system than do
states in Qi+l, such that the state behavior at level-(i + 1)
uniquely determines the composite state behavior at level-i
(this will be made more precise in a moment). States in Qb, on
the other hand, represent basic information not conveyed by
states in Qi+ , i.e., Q'b is a coordinate set of the base model
state space Q. In case there is no composite (alternatively,
basic) part at level-i, Qc(Qb) is simply deleted, that is, Qi =
Q'b (Qi = Q'). In particular, the above definition precludes a
composite state set at level-m (the "bottom" level of the hi-
erarchy) and, hence, Qm = Q'b

In specifying the model hierarchy, it is convenient to view
Xi as a pair of processes which determine the projections on
Q' and Q'b, respectively. (If one of Q' or Q'b does not exist, this
pair reduces to a single process.) More precisely, given Q', the
composite process (at level-i) is the stochastic process

Xi = {X',t I t E Tc}, T '=Ti
where the random variables Xl,t take values in Q'. For a fixed
outcome w in the underlying sample space Q, a composite state
trajectory is a function uc,,: T - Q' where uc,,(t) = X' t(c);
the composite trajectory space is the set U' = {UI w E Q}.
Similar definitions, terminology, and notation apply to the
basic process X,. To permit extension of either Xc or X' to
larger time bases, a fictitious state ¢ is adjoined to each of Ql
and Q' so that if t $ T' (similar remarks apply to the basic
part) then Xl t is defined to be a degenerate random variable
that always assumes the value ¢, i.e.,

Xi,(c) = ¢, for all c.) E Q. (22)
If X' and X' are so extended to Ti, and we take Xi to be the
process whose projections on Q' and Q' are Xl and Xb, re-
spectively, then Xi is uniquely determined by Xl and X,. (Note
that the processes X' and X' may be statistically depen-
dent.)
By the previous observation, we can alternatively regard the

level-i model as the pair of processes

Xi (= I 3

which' is a convenient view for the purpose of specifying in-
terlevel relationships. With this identification, a state trajectory
ofXi is viewed as a pair of trajectories, i.e., the trajectory space
Ui (at level-i) is taken to be the set U' 0 U' where

Uc 0 Ub = (Uc, Ub)ICO Q& .

In case there is no composite (alternatively, basic) state set at
level-i, the above representations ofXi and Ui are understood
to be their appropriate single component versions.
The required relationship of these models to the base model,

the accomplishment set, and the capability function is pre-
scribed by the following definition.

Definition 3: IfS is a total system with base model Xs and
capability function ys, the collection {XO,X1,.-. ,xm} of level-0
to level-m models is a model hierarchyfor S if the following
conditions are satisfied.

a) Xmn = X', that is, the bottom model is comprised only
of a basic process.

725

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 8, AUGUST 1980

Ys] A

Iu

YS A

IXIZE~~~~~~~........ ug0Uic b

tK
XC '.'.,.,,X,',',,.,'' UCC Sub

.

If i>Oand(u,u') E Uiwhereu E Uiandu' E U-U ...

Uo, then

^yi(U,U') = ^yi-I(Ki(U),U'). (25)

It is easily shown that yi has its intended interpretation, i.e.,
if u and u' correspond to a base model trajectory v then
,yi(u,u') = ys(v). In particular, if i = m then y'm = yS.
The practical significance of the model hierarchy, however,

is the ability to formulate the inverse of -ys via the inverses of
the yi, thereby providing a step-by-step, top-down method of
elaborating a set of accomplishment levels B. Beginning with
level-O-based capability, by (24) we have

.

S 1(B) = K01(B). (26)

Assuming that y771(B) has been determined, by (25) it follows
that

(27)7-1(B) = U (K 1(U),U'),
(u,u') e y l3(B)

Fig. 1. Total system S with (a) base model Xs and (b) model hierarchy
for S.

b) If each model Xi is extended to the utilization period
T, the base model Xs is the stochastic process Xs = IXt I t E TI
where X, = (X ,,Xb7,-, ,X°t,). Accordingly, the state space
ofXs is Q = Qb X Q'- 1 X ... X Q? and the trajectory space
U is represented by the set Um @ Um-@I U.

c) For each level i, there exists an interlevel translation
Ki where

Ko: U? 0 Uo)- A

Ki: UCOUV UCI (1 <i <im)

Km: Ub-U

such that the capability function -ys can be decomposed as
follows. If u E U where u = (um,umr- , ,uo) with ui E Ub,
then

Ys(U) = KO(KI(Km-I(Km(UM), UM-1),),uo). (23)

The terminology and notation of Definition 3 is summarized
in Fig. 1 where Fig. 1(a) is the original model and Fig. 1(b) is
the hierarchical model.
A model hierarchy thus provides a step-by-step formulation

of the capability function in terms of interlevel translations of
state trajectories, beginning with a translation of the bottom
model. It also permits the expression of capability relative to
higher level (less detailed) views of total system behavior. More
precisely, let ui denote the Level-i trajectory space, along with
all the basic trajectory spaces of higher level models, i.e.,

Vi = ui o UV' .X.. 0 Uob.
(Note that, at the extremes, UO = UO and Ur = U.) Then the
level-i based capabilityfunction is the function

defined inductively as follows. If i = 0 and u E UO, then

'YO(U) = Ko(U). (24)

where (K,1(U),U') = {(V,U')IKi(V) = u}. This process is iterated
until i = m, yielding y 1 (B) = -y (B). Actual implementa-
tions of this procedure can exploit simplified characterizations
and decompositions of trajectory sets so as to avoid the ma-
nipulation of individual trajectories (see [18] and [22]). Thus
a model hierarchy for S is useful not only in the process of
model construction but also in the process of model solu-
tion.

Although the purpose of this investigation has been to es-
tablish the foundations of performability modeling and eval-
uation, it is helpful to illustrate these ideas in the context of a
specific application. The example we consider is an aircraft
computing system of the type being developed for next-gen-
eration commercial aircraft [23], [24]. Such systems have
provided 'an impetus for the work described herein and are
representative of degradable computing systems that operate
in a real-time control environment. Although space limitations
necessitate a "scaled-down" example, it should suffice to il-
lustrate the basic concepts and constructs. More extensive
applications of this type have been investigated subsequent to
the work described in this paper; in particular, see [25]-[27]
which describe a performability evaluation of the SIFT com-
puter [24].

Beginning at the highest level of description, the total system
S = (C,E) is a fault-tolerant computer C which operates in the
environment E of a portal-to-portal flight of a commercial
aircraft. The user is interested in fuel efficiency, timeliness,
and safety, and accordingly, five levels of accomplishment are
distinguished:

ao: low-fuel consumption, no diversion to an 'alternate
landin'g site, and safe

al: high-fuel consumption, no diversion, and safe
a2: low-fuel consumption, diversion, and safe
a3: high-fuel consumption, diversion, and safe
a4: unsafe (crash).

The model hierarchy consists of four levels, beginning with a
high mission-oriented model and proceeding through aircraft
and computational task levels to the bottom level model of the

Performance I
o)

- -Z~~~~~~~~~~~~~~~~~~~~~....----

......=Base-model

Performance L

Level-O [

Level-I [F
b) Model

hierorchy

Level-tn-I)1 g~f~ I uV-' u-1
Leixc' Ub]

Level-m um

726

MEYER: DEGRADABLE COMPUTING SYSTEMS

computer. More precisely, employing the notation developed
above and assuming T = [O,h], these models are as follows.

Level-O: The model at this level is a simple, user-oriented
model which relates directly to the accomplishment levels
distinguished above. At this high level, we assume that the
model will be fully elaborated at the next lower level (i.e., no
part of the state set is basic) and hence QO = Q°. The com-
posite state set is taken to be the set

Q°= I(ql,q2,q3)lqi E0,1&
where

O
ql =

I

q2 =

I
q3 =

if the flight is fuel efficient,
otherwise,
if the flight is not diverted,
otherwise,
if the flight is safe,
otherwise.

Thus, for example, the state

q = (0,1,0)

says that the flight is fuel efficient and safe but has to be di-
verted to an alternate landing site. By the interpretation of
these states, we are modeling the status of the system on the
completion of a flight and thus the time base consists of a single
observation time at the end of utilization. More precisely (and
to illustrate the notation developed earlier),

Tco = {h}

and, accordingly, the composite process is a single random
variable

X?= IX{c, h}

with trajectory space

LJ?=Q?.

Since there is no basic process at this level, XO X°, thereby
completing the description of the level-0 model. The interlevel
translation Ko: U A (see Definition 3c); note that U(J = Q°
represents UO due to the lack of Ub) follows immediately from
the preceding definitions of Q° and A, and is given by Table
II.

Level-i: At this level of the hierarchy, the model describes
the extent to which various aircraft related tasks can be ac-

complished (the composite part) and the weather condition
at the destination airport (the basic part). Although computing
systems for advanced commercial aircraft will be called on to
realize a variety of control functions, it suffices (for the purpose
of illustration) to consider two functional tasks: fuel control
(FC) and automatic landing (AL). The FC task encompasses
functions such as engine control and navigation which, in a

more refined model, might be treated as individual tasks. The
AL task is comprised -of functions required to automatically
land the aircraft in zero-visibility weather; prior to landing,
AL is interpreted as (computer-implemented) checkout of the
AL system.
To satisfy the requirements of a model hierarchy, con-

TABLE II
FUNCTION TABLE OF TRANSLATION Ko

U=(ql q 2 ,q3) K(OU)

0 0 0 a0
0 0 1 a4

0 1 0 a2

0 1 1 a4

1 0 0 a1
1 0 1 a4

1 1 0 a3

1 1 1 a4

struction of the level- I model must rely on knowledge of how
these tasks and the condition of the weather relate to states of
the level-0 model. In this regard, we presume the following
knowledge, where TIC denotes the takeoff/cruise phase of the
flight and L denotes the landing phase; "loss" of a functional
task during a specified period of time (e.g., a phase) means
failure to accomplish that task at some time during the speci-
fied period.

a) The flight is fuel efficient iff FC is accomplished
throughout T/C and L.

b) The flight is diverted iff there is zero-visibility weather
at the landing site (ust prior to L) and either FC is lost during
T/C or AL is lost during the last half of T/C.

c) The flight is unsafe iff AL is lost during an AL (at-
tempted iff there is zero-visibility weather and the flight is not
diverted) or the fuel consumption is "excessive"; excessive fuel
consumption results iff FC is lost during both halves of T/C
or during both TIC and L.

Translation between the level- I and level-0 models (and thus
the construction at level- I) will also rely on knowledge of the
computational demands (workload) imposed by the aircraft,
where we can presume the following.

d) FC is in demand throughout TIC and L (and hence is
accomplished whenever it can be).

e) AL is not demanded during the first half of TIC, is in
demand during the last half of TIC, and is in demand during
L iff an AL is attempted [see condition c)].

Given this knowledge, we find that the set

Ql = 10,1, .71
suffices as the composite state set, where the states q E Q l are
interpreted as follows (here, for task A and time period B, "A
during B" means A can be accomplished throughout B; "no
A during B" means the opposite, i.e., if A is demanded then
A is lost during B):

0 if FC during TIC and AL during the
last half of T/C,

1 if FC during TIC and no AL during
the last half of T/C,

2 if FC during one half of TIC and no
q = FC during the other half,

3 if no FC during both halves of T/C,
4 if FC and AL during L,
5 if FC and no AL during L,
6 if no FC and AL during L,
7 if no FC and no AL during L.

727

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 8, AUGUST 1980

Note that our interpretation of these states is representative
of "supply" as opposed to "demand," i.e., the computer's
ability to supply the computations demanded by the aircraft;
considerations of demand [conditions d) and e)] will be in-
corporated in the translation between Level-i and Level-0.
With this interpretation, it suffices to observe the system at
the end of each phase, i.e.,

T = 1t2,t31
where t2 is the end of TIC (t2 = h -2 hour) and t3 = h. (Time
tI is introduced later at level-2 of the hierarchy.) Accordingly,
the composite part of the level- I model is the process

X1 = {XC,t2,X1Jt31, (28)

where, by the definition of Q',X',2 takes values in 20,1,2,3} and
Xl3 takes values in 14,5,6,71; the composite trajectory space
is therefore the Cartesian product

Ul = 10,1,2,31 X 14,5,6,71. (29)

The basic part of the level- I model involves only the weather
and is much easier to specify. Here

Qb = {0,1}

can serve as the state set where, if q E Qb1, then

I

q= fO
if there is zero-visibility weather at the landing
site just prior to L,

otherwise.

Moreover, with this interpretation, a single observation at time
t2 (the end of T/C) suffices; hence, the basic part is the (single
variable) process

Xb = 1X)It21-
To complete the construction according to the general

procedure described in conjunction with Definition 3, XA1 and
are then extended to the time base T' = T' u T' = 1t2,t31

so as to establish a common time base for both processes. Here,
since T) = TI, only Xl requires extension, resulting in the
process

Xb) = 1Xbt2,Xbt31 (30)

[where Xb.t3 = ¢; see (22)] with trajectory space

U)b = 10,11 x 14}. (31)

Combining the composite process X1 (28) with the basic
process X) (30), the level- I model is described by the pair of
processes

XT - (XC,Xb))
with the (combined) trajectory space [see (29) and (31)]

Ul = UC X Ub)
= 10,1,2,31 X 14,5,6,71 x 10,11 x 1{¢.

Finally, to establish that this model can indeed support the
composite part (and hence all) of the level-0 model, we must
be able to specify an interlevel translation K1: Ul -' U°[see

Definition 3a)] which is consistent with the aircraft's in-flight
behavior [conditions a)-c)] and the aircraft's computational
demands [conditions d) and e)]. The required translation is
obtained by applying just these conditions, for example, if
u E U1 where u = (2,5,1,¢) (which says FC can be accom-
plished during one-half but not all of TIC; FC can be accom-
plished during L but AL cannot be; there is zero-visibility
weather at the landing site just prior to L) then, by conditions
a)-e), it follows that K1(U) = (1,1,0) (the flight is fuel ineffi-
cient, diverted, and safe). The remaining values of K, are de-
termined in a like manner.

Level-2: At this level, the computational capacity of the
computer C is represented in terms of its ability to execute FC
and AL computations during specified phases of the utilization
period. We assume that this ability will be fully determined
by the computer model at level-3 and, hence, the state set Q2
coincides with the composite state set Qc. The latter is taken
to be the set

= 1(ql,q2)lqi e 10,111
where, for a given phase of T, the coordinates qi and q2 are
interpreted as follows:

0 if FC computations can be executed
q 1 = throughout the phase,

I otherwise

0
q2 =

11

if AL computations can be execuited
throughout the phase,

otherwise.

To support the composite part of the level-I model (28), it
suffices to distinguish three such phases, obtained from the
level-I phases by adding an- observation time tI midway
through TIC. More precisely, if t2 and t3 are as defined for
level-I then

T2 = ItI,t2,t31
where tI = t2/2, thereby distinguishing phase [O,t] (first half
of TIC), phase [t1,t2] (second half of TIC), and phase [t2,t3]
(L). Accordingly, the level-2 model (comprised of a composite
part only) is the process

X=2= X X2,tI,X2,X2,3

where variable XC2tj (i = 1,2,3) takes values in Q2 = 10,112, e.g.,
if X2 = (1,0) then the computer is unable to execute FC
computations at some time during [t1,t2] but has the resources
to execute AL computations during this period. The level-2
trajectory space is therefore the set

U2 = j2 = 10,112 X 10,112 X 10,112 (32)
which is refined enough to admit an interlevel translation K2
from U2 into U) (29). Specification of this translation follows
immediately from the definitions of uP and U1; for example,
if u e U2 where u = [(0,1),(1,1),(0,1)] (FC computations can
be executed throughout the first and third phases, but not the
second; AL computations cannot be executed throughout any

728

MEYER: DEGRADABLE COMPUTING SYSTEMS

3X(1-c) 2Xc

4

Fig. 2. Transition graph of the Level-3 Markov model.

TABLE III
COMPUTATIONAL CAPABILITY OF C
Level-2 phase and computational task

a)

4)
Ca

-4)

a)

a)

-J

0
x x x x x x

1 I x x I'x X x X

2 X X _ X

3 1 _ X I__ X X _

4 I -_ 1 - -- 1 1_1

phase), then K2(u) = (2,5) (FC can be accomplished during
one-half but not all of TIC; FC can be accomplished during
L but AL cannot be).

Level-3: This model, at the bottom level of the hierarchy,
describes variations in the computer's structure caused by
faults which occur during utilization. Here we find that con-

ventional stochastic models employed in reliability evaluation
(e.g., continuous-time Markov models [7]-[9]) can adequately
support higher level models of the type described previously.
In particular, for this example, we suppose that C is a recon-

figurable, fault-tolerant computer whose resources consist of
four (essentially identical) processing subsystems. The in-
tegrity of these subsystems is represented by the state set

Q= = 10,1,2,3,41

where state q = i means that exactly i subsystems are faulty.
Assuming that subsystems fail permanently at, a constant rate
X (failures/hour) and letting c denote the "coverage" [4], the
bottom model X3 = Xb is taken to be the continuous-time
time-homogeneous Markov process described by the graph of
Fig. 2. The level-3 trajectory space is the set U3 = U' of all
functions of the form

u: [O,h] Q3

which can be realized by a Markov process of this type (see,
for example, [15, ch. 8.3]).
To establish the interlevel translation K3: U3 U2, it is

necessary to know the extent to which available computer re-

sources (the fault-free subsystems) can support the execution
of FC and AL computations during each of the level-2 phases.

Generally, such knowledge will depend on a number of factors
including the user's computational priorities during each phase,
the computational demands of the computer's operating sys-

tem, and the processing capacity of each (fault-free) subsys-
tem. To avoid further elaboration (that would really not serve

our purpose here), let us suppose these factors have already
been examined, yielding the information summarized in Table
III. An "X" entry in the table indicates that the resources of
level-3 state i (designated by the row) are configured during
the level-2 phase (designated by the column) so as to permit
execution of the computational task (designated by the col-
umn); absence of an "X" signifies the contrary situation. Note
that, as at level-I and level-2 of the hierarchy, this information
is representative of supply as opposed to demand, e.g., in states
0, 1, and 3 during phase [O,t I], the computer is able to execute
AL computations even though it will not be called on to do
so.

This information, along with certain properties of the base

model X3 (Fig. 2), suffices to determine the interlevel trans-
lation K3. For example, suppose that u E U3 (where u: [0,h]

Q3) where u(0) = 0, u(ti) = 2, u(t2) = 3, and u(t3) = 3.

Then, since resources fail permanently, it follows that u(t) E
10,1,21, for all t e [O,t I]; u (t) E 12,31, for all t e [tl,t2]; and
u(t) = 3, for all t E [t2,t3]. This says, in turn (see Table III),
that the computer's ability to execute AL computations is lost
at some time during [O,tI], AL and FC are lost during [tI,t2]
(even though AL capability is recovered by the end of the
phase), and there is no ability to execute AL computations
throughout [t2,t3] (due to a reassignment of computational
priorities at the beginning phase 3). In other words, for the
trajectory u in question, the only computations that are exe-

cuted successfully are FC computation's throughout phases
[O,tI] and [t2,t3]; hence K3(U) = ((0,1),(1,1),(0,1)), resulting
in a trajectory that was illustrated earlier at level-2.
By similar arguments, each trajectory u E Ub, when sam-

pled at times 0,t ,t2, and t3, can be assigned a (unique) state
trajectory K3(U) E U3 = U3, thereby determining the interlevel
translation K3. This, then, completes the specification of the
four-level model hierarchy for S and, therefore, the perfor-
mability model (Xs,,ys) where Xs = (X3,XJ) and Ys is de-
termined by the interlevel translations KO-K3 according to
(23).
To "solve" the model (i.e., evaluate the performabilityps),

we apply the two step procedure stated at the outset of this
section. Implementation of step 1), i.e., calculation of the
trajectory sets yz `(a) for each a E A (such sets suffice since
A is finite, see Definition la, relies on the notion of a level-i
based capability function [see (24) and (25)] and on successive
formulations of yT`(a) for i = 0,1,2,3 [see (26) and (27)]. Step
2) of the procedure, i.e., calculation of the probabilities
Pr(Qy-'(a)) for each a E A, can be implemented via intro-
duction of an equivalent "phased" base model-and the subse-
quent application of specially developed formulas involving
"interphase" and "intraphase" matrices. (See [28] for a de-
tailed discussion of this technique.)
The solution procedure we have just outlined is a subject in

itself and, without further elaboration, it would be difficult to
illustrate its application. We can, however, illustrate the kind

-- . - - - k,..-- - -..- - - -- - - -..- - ----

[0 , tI I [t I 2 t2 1 1 [t2 -' t3]

729

[FC AL FC AL FC AL

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-29, NO. 8, AUGUST 1980

TABLE IV
PERFORMABILITIES OF SYSTEMS Si AND S2

PS(a) PS (a)
a ~~1 2

a0 0.999994 0.999821

a1 3.4 X 10-6 3.4 X 10-5

a2 0 0

a3 2.6 X 10 6 1.4 x 10 4

a4 2.2 a 10 I 5.1 X 10

of results that have been obtained for specific instances of the
preceding example. In the first instance (S1), the environment
is a short flight from Washington, DC to New York City where
the duration h is 1 h and the probability of zero-visibility
(Category III) weather at JFK is 0.011. In the second instance
(S2), the environment is a longer flight from Washington, DC
to Los Angeles where h is 5.5 h and the probability of Category
III weather is 0.019. Both instances assume a computer C
where the failure rate of each processing subsystem is X =

io-, the coverage is ideal (c = 1), and the initial state X3 is
0 with probability 1. The resulting performabilities are given
in Table IV. Note that, in both instances, Level a3 (low-fuel
consumption, diversion, and safe) is impossible to accomplish,
due to the probabilistic nature of the base model (Fig. 2) and
the way computational tasks are allocated to available com-

puter resources (Table III).

V. SUMMARY

Since traditional distinctions between performance and
reliability become blurred when performance is degradable,
we have proposed that the two be dealt with simultaneously
via a unified measure called performability. After formalizing
this measure in probability-theoretic terms, it was shown that
performability is a natural component of system effectiveness
and is a proper generalization of both performance and reli-
ability. Performability modeling needs were then characterized
via the concept of a capability function and it was demon-
strated that capability is a proper extension of the kind of
structure-behavior relationships that are typically assumed
in reliability models. Finally, a hierarchical modeling scheme
was introduced to facilitate both model construction and model
solution and, in particular, to permit formulation of the ca-

pability function via interlevel translations. These concepts
were then illustrated for an aircraft computing system.

It is hoped that the results of this paper can serve as a

foundation for future work on unified performance-reliability
models and (model-based) solution methods. Our experience
to date with further developments [21],-[28] and applications
[25]-[27] of this methodology suggests that performability
evaluation is indeed feasible, thereby providing a means of
assessing the kind of performance-reliability interaction that
is characteristic of degradable systems.

ACKNOWLEDGMENT

This research was conducted at the Systems Engineering
Laboratory of the University of Michigan with the able co-

operation of Research Assistants R. Ballance, D. Furchtgott,
and L. Wu. The work has also benefited from valuable dis-
cussions with S. Bavuso at the NASA Langley Research
Center, as well as with many other members of the NASA
staff.

REFERENCES

[1] L. Svobodova, Computer Performance Measurement and Evaluation
Methods: Analysis and Applications. New York: Elsevier, 1976.

[2] D. Ferrari, Computer Systems Performance Evaluation. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[3] H. Kobayashi, Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology. Reading, MA: Addison-
Wesley, 1978.

[4] W. G. Bouricius, W. C. Carter, and P. R. Schneider, "Reliability
modeling techniques for self-repairing computer systems," in Proc. ACM
1969 Nat. Conf., Aug. 1969, pp. 295-305.

[5] B. R. Borgerson and R. F. Freitas, "A reliability model for gracefully
degrading and standby-sparing systems," IEEE Trans. Comput., vol.
C-24, pp. 517-525, May 1975.

[6] H. B. Baskin, B. R. Borgerson, and R. Roberts, "PRIME-A modular
architecture for terminal-oriented systems," in 1972 Spring Joint
Computer Conf., AFIPS Conf. Proc., vol. 40. Washington, DC:
Spartan, 1972, pp. 431-437.

[7] J. C. Laprie, "Reliability and availability of repairable structures," in
Dig, 1975 Int. Symp. Fault-Tolerant Computing, Paris, France, June
1975, pp. 87-92.

[8] Y.-W. Ng and A. Avizienis, "A reliability model for gracefully degrading
and repairable fault-tolerant systems," in 1977 Proc. Int. Symp. on
Fault-Tolerant Computing, Los Angeles, CA, June 1977, pp. 22-28.

[9] A. Costes, C. Landrault, and J.-C. Laprie, "Reliability and availability
models for maintained systems featuring hardware failures and design
faults," IEEE Trans. Comput., vol. C-27, pp. 548-560, June 1978.

[10] M. D. Beaudry, "Performance-related reliability measures for computing
systems," IEEE Trans. Comput., vol. C-27, pp. 540-547, June 1978.

[11] R. Troy, "Dynamic reconfiguration: An algorithm and its efficiency
evaluation," in Proc. 1977 Int. Symp. Fault- Tolerant Computing, Los
Angeles, CA, June 1977, pp. 44-49.

[12] J. Losq, "Effects of failures on gracefully degradable systems," in Proc.
1977 Int. Symp. Fault-Tolerant Computing, Los Angeles, CA, June
1977, pp. 29-34.

[13] P. E. Pfeiffer, Concepts of Probability Theory. New York:
McGraw-Hill, 1965.

[14] E. Wong, Stochastic Processes in Information and Dynamical Systems.
New York: McGraw-Hill, 1971.

[15] E. 4inlar, Introduction to Stochastic Processes. Englewood Cliffs,
NJ: Prentice-Hall, 1975.

[16] B. P. Zeigler, Theory ofModelling and Simulation. New York: Wiley,
1976.

[17] F. P. Mathur and A. Avizienis, "Reliability analysis and architecture
of a hybrid-redundant digital system: Generalized triple modular re-
dundancy with self-repair," in Proc. 1970 Spring Joint Computer Conf,
AFIPS Conf., vol. 36. Washington, DC: Spartan, 1970, pp. 375-
383.

[18] J. F. Meyer, "Models and techniques for evaluating the effectiveness
of aircraftcomput. systems," Semiannu. Status Rep. 3, NASA Rep.
CR158992 (NTIS Rep. N79-17564/2GA), Jan. 1978.

[19] Z. W. Birnbaum, J. D. Esary, and S. C. Saunders, "Multicomponent
systems and structures and their reliability," Technometrics, vol. 3, pp.
55-77, Feb. 1961.

[20] J. D. Esary and H. Ziehms, "Reliability of phased missions," in Reli-
ability and Fault Tree Analysis, SIAM, Philadelphia, PA, 1975, pp.
213-236.

[21] R. A. Ballance and J. F. Meyer, "Functional dependence and its appli-
cation to system evaluation," in 1978 Proc. Johns Hopkins Conf Inform.
Sciences and Systems, Johns Hopkins, Univ., Baltimore, MD, Mar.
1978, pp. 280-285.

[22] J. F. Meyer, "Models and techniques for evaluating the effectiveness
of aircraft computing systems," Semiannu. Status Rep. 4, NASA Rep.
CR158993 (NTIS, Rep. N79-17563/4GA), July 1978.

[23] A. L. Hopkins, Jr., T. B. Smith, 111, and J. H. LaLa, "IFTMP-A highly
reliable fault-tolerant multiprocessor for aircraft," Proc. IEEE, vol.
66, pp. 1221-1239, Oct. 1978.

730

731MEYER: DEGRADABLE COMPUTING SYSTEMS

[241 J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt,
P. M. Melliar-Smith, R. E. Shostak, and C. B. Weinstock, "SIFT: De-
sign and analysis of a fault-tolerant computer for aircraft control," Proc.
IEEE, vol. 66, pp. 1240-1255, Oct. 1978.

[25] D. G. Furchtgott and J. F. Meyer, "Performability evaluation of
fault-tolerant multiprocessors," in 1978 Dig. Government Microcircuit
Applications Conf., Monterey, CA, Nov. 1978, pp. 362-369.

[26] J. F. Meyer, D. G. Furchtgott, and L. T. Wu, "Performability evaluation
of the SIFT computer," in Proc. 1979 Int. Symp. Fault-Tolerant
Computing, Madison, WI, June 1979, pp. 43-50.

[27] J. F. Meyer, D. G. Furchtgott, and L. T. Wu, "Performability evaluation
of the SIFT computer," IEEE Trans. Comput., vol. C-29, pp. 501-509,
June 1980.

[28] L. T. Wu and J. F. Meyer, "Phased models for evaluating the perfor-
mability of computing systems," in 1979 Proc. Johns Hopkins Conf.
Information Sciences and Systems, Baltimore, MD, Mar. 1979, pp.

426-431.

John F. Meyer (M'60-SM'71) received the B.S. degree from the University
of Michigan, Ann Arbor,.the M.S. degree from Stanford University, Stan-
ford, CA, and the Ph.D. degree in communication sciences, also from the
University of Michigan, in 1957, 1958, and 1967, respectively.

He is currently a Professor in the Department of
Electrical and Computer Engineering and the De-
partment of Computer and Communication Sci-
ences, University of Michigan. He is also associ-
ated with their graduate program in computer,
information, and control engineering and is a
member of the Systems Engineering Laboratory.
In addition to his university affiliations, he is a
consultant to several firms. During the past 20
years, he has been active in computer research
and has published widely in the areas of system

modeling and fault-tolerant computing. In the summer of 1977 he was a

Visiting Researcher at the Laboratoire d'Automatique et de d'Analyse des
Systemes, Toulouse, France, and in 1975, during an academic leave, he was
affiliated with the Direction de l'Informatique de la Soci6t6 Thomson-CSF,
Paris. Prior to joining the Michigan faculty in 1967, he was a Research En-
gineer at the California Institute of Technology Jet Propulsion Laboratory
where his contributions included the first patent issued to the National
Aeronautics and Space Administration.

Dr. Meyer is a member ofSigma Xi, Tau Beta Pi, Eta Kappa Nu, the As-
sociation for Computing Machinery, and the American Association for the
Advancement of Science. In the IEEE Computer Society, he served as
Chairman of the Technical Committee on Fault-Tolerant Computing from
1976-1979. He is also a member of the Publications Committee and has served
as a Guest Editor of the IEEE TRANSACTIONS ON COMPUTERS.

